## Spring 2017 MATH5012

## Exercise 4

(1) Let $\omega_{n}$ be the volume of the unit ball in $\mathbb{R}^{n+1}$, so $\omega_{1}=2, \omega_{2}=\pi, \omega_{3}=4 / 3 \pi$, etc. Show that

$$
\omega_{n}=2 \omega_{n-1} \int_{0}^{1}\left(1-x^{2}\right)^{(n-1) / 2} d x
$$

and deduce the formula

$$
\omega_{n}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)}
$$

Look up the definition of the Gamma function yourself. This is supposed a problem on Fubini's theorem in advanced calculus.
(2) Use Fubini's theorem and the relation

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t \quad(x>0)
$$

to prove that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

(3) Complete the following proof of Hardy's inequality (chapter 3, Exercise 14 in $[\mathrm{R}])$ : Suppose $f \geq 0$ on $(0, \infty), f \in L^{p}, 1<p<\infty$, and

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t
$$

Write $x F(x)=\int_{0}^{x} f(t) t^{\alpha} t^{-\alpha} d t$, where $0<\alpha<1 / q$, use Hölder's inequality to get an upper bound for $F(x)^{p}$, and integrate to obtain

$$
\int_{0}^{\infty} F^{p}(x) d x \leq(1-\alpha q)^{1-p}(\alpha p)^{-1} \int_{0}^{\infty} f^{p}(t) d t
$$

Show that the best choice of $\alpha$ yields

$$
\int_{0}^{\infty} F^{p}(x) d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(t) d t
$$

(4) Prove the following analogue of Minkowski's inequality, for $f \geq 0$ :

$$
\left\{\int[f(x, y) d \lambda(y)]^{p} d \mu(x)\right\}^{\frac{1}{p}} \leq \int\left[\int f^{p}(x, y) d \mu(x)\right]^{\frac{1}{p}} d \lambda(y) .
$$

Supply the required hypotheses.

Many problems are taken from chapter $8,[R]$.

